Proposition VI.3

If an angle in a triangle is bisected the segments of the base are in the same ratio as the remaining sides, and the converse of this statement.

Draw triangle ABC and bisect $\angle BAC$ with line AD so that point D lies on BC.
Given that \(\angle BAD = \angle DAC \), prove \(BD : DC = BA : CA \).
Draw a line parallel to \(AD \) through point \(C \) [I.31], and extend \(BA \) until it hits that line at point \(E \) [Post 2].
\(\angle DAC = \angle ACE \) [I.29]
\(\angle BAD = \angle BEC \) [I.29]
So \(\angle ACE = \angle BEC \) [c.n.1]
Thus \(AC = AE \) [I.6]
So \(BD : BC = BA : AE \) [VI.2]
Since \(AC = AE, BD : BC = BA : AC \) [c.n.1]

The Converse:
Given \(BD : DC = BA : AC \), prove \(\angle BAD = \angle DAC \).
\(\angle DAC = \angle ACE \) and \(\angle BAD = \angle AEC \) [I.29]
\(BD : DC = BA : AE \) [VI.2]
Using the given information, \(BA : AC = BA : AE \) [V.11]
So \(AC = AE \) [V.9]
So \(\angle ACE = \angle AEC \) [I.5]
Thus \(\angle BAD = \angle DAC \) [c.n.1]. Therefore \(AD \) bisects \(\angle BAC \).
QED