Proposition X.1

Let $\epsilon > 0$. Continually removing more than half of a magnitude leaves a magnitude less that ϵ.

Let AB and C be our magnitudes with $AB > C$. C is out ϵ.

By (def. V.4), $n(C) > AB$.

Let this be DE.

Let $n = 3$ so $DF = FG = GE = C$.

Cut off HB on AB so that HB is more than half of AB.

Repeat - cut off HK on AH so that HK is more than half of AH.

Do this n times.

Claim: $AK < C$

Since $DE = 3(C)$ and we know $C = DE$, we can say $GE < \frac{1}{2}DE$.

$HB > \frac{1}{2}AB$ (by the way we cut it)

$DE > AB$ so $DG > AH$ which we get by taking away HB and GE.

Therefore, $\frac{1}{2}DE > \frac{1}{2}AB$ since we took away less than half of DE and more than half of AB.

$FG = \frac{1}{2}DG$ and $HK > \frac{1}{2}AH$

Therefore, $DF > AK$.

1
We know $DF = C$, so $C > AK$.

Since C is our ϵ, we can say that $\epsilon > AK$.

Q.E.F.

Comment:
This works for any n.

Porism:
This works for removing exactly half as well.