Exercise 9.1. For each of the following matrices A, find the eigenvalue λ, and a matrix B such that $B^{-1}AB = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$.

(a) $A = \begin{bmatrix} 6 & 1 \\ -1 & 8 \end{bmatrix}$

(b) $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$

(c) $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

(d) $A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$

(To make life easier for the grader, please choose $v = e_1$ in each problem. Your B’s will all be the same, having 1 in the upper right corner.)

Solutions:

a) 7, $B = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$

b) 0, $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

c) 1, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

d) 1, $B = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$

In general, $B = \begin{bmatrix} (a-d)/2 \\ c \end{bmatrix}$, if A is not already upper triangular.

Exercise 9.2. Show that every eigenvector of $\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$ is proportional to e_1. (Hint: Just calculate.)

Solution: Set $\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix}$.

Get $\begin{bmatrix} \lambda x + y \\ \lambda y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix}$,

so $y = 0$, and $(x, 0) = xe_1$.

Exercise 9.3. Let A be a matrix with multiple eigenvalue λ, and let u be an eigenvector of A. Assume that A is not a scalar matrix. Prove the following statements.

(a) Every eigenvector of A is proportional to u. (Hint: Proposition 1.)

(b) $A_0u = (0, 0)$

(c) If v is a vector for which $A_0v = (0, 0)$, then v is an eigenvector of A. 1
(Taken together, these facts mean that A has exactly one eigensystem, which consists precisely of the vectors sent to $(0,0)$ by A_0.)

Solutions:

a) If v is any eigenvector of A, then $B^{-1}v$ is an eigenvector of $B^{-1}AB$. But by exercise 9.2, all eigenvectors of $B^{-1}AB$ are proportional to e_1. So $B^{-1}v = te_1$ for some scalar t. Multiplying both sides by B, we get

$$v = tBe_1 = tu,$$

so v is proportional to u.

b) Apply both sides of the matrix equation $A = \lambda I + A_0$ to u. We get

$$Au = \lambda u + A_0u.$$

But $Au = \lambda u$, so

$$\lambda u = \lambda u + A_0u.$$

Subtract λu from both sides, and get $A_0u = 0$.

c) If $A_0v = (0,0)$, then $Av = (\lambda I + A_0)v = \lambda v + (0,0) = \lambda v$.

Exercise 9.4. Suppose $A^n = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ for some $n \geq 0$.

(a) What are the eigenvalues of A? (Hint: Apply A repeatedly to both sides of the equation $Au = \lambda u$.)

(b) Compute A^2. (Hint: Use Proposition 3, and the value of λ from part (a).)

Solutions:

a) $\lambda^n = 0$, so $\lambda = 0$.

b) $A = A_0$, so $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, by Prop. 3.

Exercise 9.5. Suppose $\lambda = 0$ is the only eigenvalue of A. Does this imply that A is nilpotent?

Solution: Yes, because $A = A_0$, and $A_0^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Exercise 9.6. Show that the nilpotent matrices are precisely those of the form

$$A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$$

with $a^2 + bc = 0$.

(You have to show two things: First, that every nilpotent matrix has this form. Second, that every matrix of this form is nilpotent.)

Solution: First suppose A is nilpotent. Then $\lambda = 0$ is the only eigenvalue of A, by exercise 9.4a). Hence $P_A(x) = x^2$, so $\text{tr} A = \det A = 0$. The former means $d = -a$, the latter means $-a^2 - bc = 0$.

Second, suppose

$$A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$$

with $a^2 + bc = 0$.

then $P_A(x) = x^2$ so $\lambda = 0$ is the only eigenvalue, so A is nilpotent, by the affirmative answer to exercise 9.5.